Amazon QuickSight is a cloud-native BI service that allows end users to create and publish dashboards in minutes, without provisioning any servers or requiring complex licensing. You can view these dashboards on the QuickSight product console or embed them into applications and websites. After you deploy a dashboard, it’s important to assess how they and other assets are being adopted, accessed, and used across various departments or customers.

In this post, we use a QuickSight dashboard to present the following insights:

  • Most viewed and accessed dashboards
  • Most updated dashboards and analyses
  • Most popular datasets
  • Active users vs. idle users
  • Idle authors
  • Unused datasets (wasted SPICE capacity)

You can use these insights to reduce costs and create operational efficiencies in a deployment. The following diagram illustrates this architecture.

The following diagram illustrates this architecture.

Solution components

The following table summarizes the AWS services and resources that this solution uses.

Resource TypeNamePurpose
AWS CloudTrail logsCloudTrailMultiAccountCapture all API calls for all AWS services across all AWS Regions for this account. You can use AWS Organizations to consolidate trails across multiple AWS accounts.
AWS Glue crawler

QSCloudTrailLogsCrawler

QSProcessedDataCrawler

Ensures that all CloudTrail data is crawled periodically and that partitions are updated in the AWS Glue Data Catalog.
AWS Glue ETL jobQuickSightCloudTrailProcessingReads catalogued data from the crawler, processes, transforms, and stores it in an S3 output bucket.
AWS Lambda functionExtractQSMetadata_funcExtracts event data using the AWS SDK for Python, Boto3. The event data is enriched with QuickSight metadata objects like user, analysis, datasets, and dashboards.
Amazon Simple Storage Service (s3)

CloudTrailLogsBucket

QuickSight-BIonBI-processed

One bucket stores CloudTrail data. The other stores processed data.
Amazon QuickSightQuicksight_BI_On_BO_AnalysisVisualizes the processed data.

 Solution walkthrough

AWS CloudTrail is a service that enables governance, compliance, operational auditing, and risk auditing of your AWS account. You can use CloudTrail to log, continuously monitor, and retain account activity related to actions across your AWS infrastructure. You can define a trail to collect API actions across all AWS Regions. Although we have enabled a trail for all Regions in our solution, the dashboard shows the data for single Region only.

After you enable CloudTrail, it starts capturing all API actions and then, at 15-minute intervals, delivers logs in JSON format to a configured Amazon Simple Storage Service (Amazon S3) bucket. Before the logs are made available to our ad hoc query engine, Amazon Athena, they must be parsed, transformed, and processed by the AWS Glue crawler and ETL job.

Before the logs are made available to our ad hoc query engine

This will be handled by AWS Glue Crawler & AWS Glue ETL Job. The AWS Glue crawler crawls through the data every day and populates new partitions in the Data Catalog. The data is later made available as a table on the Athena console for processing by the AWS Glue ETL job. Glue ETL Job QuickSightCloudtrail_GlueJob.txt filters logs and processes only those events where the event source is QuickSight. (for example, eventSource = quicksight.amazonaws.com’).

  This will be handled by AWS Glue Crawler & AWS Glue ETL Job.

The following screenshot shows the sample JSON for the QuickSight API calls.

The following screenshot shows the sample JSON for the QuickSight API calls.

The job processes those events and creates a Parquet file. The following table summarizes the file’s data points.

Quicksightlogs
Field NameData Type
eventtimeDatetime
eventnameString
awsregionString
accountidString
usernameString
analysisnameString
DateDate

The processed data is stored in an S3 folder at s3://<BucketName>/processedlogs/. For performance optimization during querying and connecting this data to QuickSight for visualization, these logs are partitioned by date field. For this reason, we recommend that you configure the AWS Glue crawler to detect the new data and partitions and update the Data Catalog for subsequent analysis. We have configured the crawler to run one time a day.

We need to enrich this log data with metadata from QuickSight, such as a list of analyses, users, and datasets. This metadata can be extracted using descibe_analysis, describe_user, describe_data_set in the AWS SDK for Python.

We provide an AWS Lambda function that is ideal for this extraction. We configured it to be triggered once a day through Amazon EventBridge. The extracted metadata is stored in the S3 folder at s3://<BucketName>/metadata/.

Now that we have processed logs and metadata for enrichment, we need to prepare the data visualization in QuickSight. Athena allows us to build views that can be imported into QuickSight as datasets.

We build the following views based on the tables populated by the Lambda function and the ETL job:

CREATE VIEW vw_quicksight_bionbi AS SELECT Date_parse(eventtime, '%Y-%m-%dT%H:%i:%SZ') AS "Event Time", eventname AS "Event Name", awsregion AS "AWS Region", accountid AS "Account ID", username AS "User Name", analysisname AS "Analysis Name", dashboardname AS "Dashboard Name", Date_parse(date, '%Y%m%d') AS "Event Date" FROM "quicksightbionbi"."quicksightoutput_aggregatedoutput" CREATE VIEW vw_users AS SELECT usr.username "User Name", usr.role AS "Role", usr.active AS "Active" FROM (quicksightbionbi.users CROSS JOIN Unnest("users") t (usr)) CREATE VIEW vw_analysis AS SELECT aly.analysisname "Analysis Name", aly.analysisid AS "Analysis ID" FROM (quicksightbionbi.analysis CROSS JOIN Unnest("analysis") t (aly)) CREATE VIEW vw_analysisdatasets AS SELECT alyds.analysesname "Analysis Name", alyds.analysisid AS "Analysis ID", alyds.datasetid AS "Dataset ID", alyds.datasetname AS "Dataset Name" FROM (quicksightbionbi.analysisdatasets CROSS JOIN Unnest("analysisdatasets") t (alyds)) CREATE VIEW vw_datasets AS SELECT ds.datasetname AS "Dataset Name", ds.importmode AS "Import Mode" FROM (quicksightbionbi.datasets CROSS JOIN Unnest("datasets") t (ds))

BDB 1093 5QuickSight visualization

Follow these steps to connect the prepared data with QuickSight and start building the BI visualization.

  1. Sign in to the AWS Management Console and open the QuickSight console.

You can set up QuickSight access for end users through SSO providers such as AWS Single Sign-On (AWS SSO), Okta, Ping, and Azure AD so they don’t need to open the console.

You can set up QuickSight access for end users through SSO providers

  1. On the QuickSight console, choose Datasets.
  2. Choose New dataset to create a dataset for our analysis.

Choose New dataset to create a dataset for our analysis.

  1. For Create a Data Set, choose Athena.

In the previous steps, we prepared all our data in the form of Athena views.

  1. Configure permission for QuickSight to access AWS services, including Athena and its S3 buckets. For information, see Accessing Data Sources.

Configure permission for QuickSight to access AWS services,

  1. For Data source name, enter QuickSightBIbBI.
  2. Choose Create data source.

Choose Create data source.

  1. On Choose your table, for Database, choose quicksightbionbi.
  2. For Tables, select vw_quicksight_bionbi.
  3. Choose Select.

Choose Select.

  1. For Finish data set creation, there are two options to choose from:
    1. Import to SPICE for quicker analytics – Built from the ground up for the cloud, SPICE uses a combination of columnar storage, in-memory technologies enabled through the latest hardware innovations, and machine code generation to run interactive queries on large datasets and get rapid responses. We use this option for this post.
    2. Directly query your data – You can connect to the data source in real time, but if the data query is expected to bring bulky results, this option might slow down the dashboard refresh.
  2. Choose Visualize to complete the data source creation process.

Choose Visualize to complete the data source creation process.

Now you can build your visualizations sheets. QuickSight refreshes the data source first. You can also schedule a periodic refresh of your data source.

Now you can build your visualizations sheets.

The following screenshot shows some examples of visualizations we built from the data source.

The following screenshot shows some examples of visualizations we built from the data source.

 

This dashboard presents us with two main areas for cost optimization:

  • Usage analysis – We can see how analyses and dashboards are being consumed by users. This area highlights the opportunity for cost saving by looking at datasets that have not been used for the last 90 days in any of the analysis but are still holding a major chunk of SPICE capacity.
  • Account governance – Because author subscriptions are charged on a fixed fee basis, it’s important to monitor if they are actively used. The dashboard helps us identify idle authors for the last 60 days.

Based on the information in the dashboard, we could do the following to save costs:

Conclusion

In this post, we showed how you can use CloudTrail logs to review the use of QuickSight objects, including analysis, dashboards, datasets, and users. You can use the information available in dashboards to save money on storage, subscriptions, understand maturity of QuickSight Tool adoption and more.


About the Author

Sunil SalunkheSunil Salunkhe is a Senior Solution Architect working with Strategic Accounts on their vision to leverage the cloud to drive aggressive growth strategies. He practices customer obsession by solving their complex challenges in all the aspects of the cloud journey including scale, security and reliability. While not working, he enjoys playing cricket and go cycling with his wife and a son.